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ABSTRACT 

A factor analysis of 67 landscape pattern metrics was performed to quantify the ability of 

landscape pattern metrics to explain land cover pattern, and to report individual landscape 

pattern metric values that are statistically independent. This land cover pattern is measured 

from 7.68 x 7.68      GeoTiff image tiles of the conterminous United States Geological 

Survey (USGS) 1992 National Land Cover Dataset (NCLD). Using factor analysis to rank 

independent landscape pattern information, each landscape pattern metric produces the 

explanatory power of that landscape pattern metric amongst the other 66 landscape pattern 

metrics—any landscape pattern metrics that report similar values contribute redundant 

information. The metrics that contribute the most information are Jackson’s           

statistic (    ), typically contributing to 97 % of the explained variability; the Fourier 

Metric of Fragmentation (   ), typically contributing to 65 % of the explained variability; 

and average LCLU class lacunarity (    ), typically contributing to 62 % of the explained 

variability. Two other Fourier-based landscape pattern metrics we tested, the Least Squares 

Fourier Transform Fractal Dimension Estimation (     ) and the Fourier Metric of 

Proportion (   ), contributed 50 % and 12 % to the explained variability, respectively. In 

addition, the values reported by each of the Fourier metrics are revealed to be relatively 

independent amongst commonly used landscape pattern metrics and are thus demonstrated to 

be appropriate for explaining general landscape pattern variability. 

Keywords: Fourier, Landscape Pattern Metric, Factor Analysis, NLCD. 

 

 

INTRODUCTION 

Interpreting the effects of landscape pattern on ecosystem function is not a new adventure 

in ecological study. A number of researchers have successfully related landscape pattern 

metrics to environmental variables. Landscape pattern has been broadly interpreted to relate 

to the status of a variety of environmental variables—including identifying the presence of 

nitrogen, phosphorus, and lead, and measuring chlorophyll nutrient loads, fish diversity, 

insect density, and broader invertebrate density (Detenbeck et al., 1993; Johnes et al., 1996; 

John-son et al., 1997; Klein, 1979; Osborne & Wiley, 1988; Schueler & Galli, 1992; 

Sponseller et al., 2001; Wang et al., 1998; Woodwell, 1998). Each of these environmental 

variables have been correlated to landscape pattern to within 65 % to 85 % of their total 

variability (Jones et al., 2001). 

Examples of the landscape pattern analysis approach can be found for environments as 

diverse as the watersheds of Brazil’s Amazon and urban streambeds in Maryland, USA. In 
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two studies by Williams et al. (1997) and Williams & Melack (1997) an inverse correlation 

between increases in Rodoñia, Brazil presence of forest land cover landscape pattern metric 

and stream water nitrogen-to-phosphorus nutrient ratios were observed for peak stream flow 

storm events—making the presence of forest land cover landscape pattern metric a strong 

indicator of nutrient flow. In a similar study, but in a developed area of Maryland, USA 

during drought and wet years, nitrate exports to streams showed significant variation in 

streams depending on whether the adjacent land use was suburban or urban (Kaushal et al., 

2010; 2008), allowing the authors to predict stream hypoxic zones using an along stream 

land use landscape pattern metric. The basic approach taken in these experiments followed 

three stages: 
 

1. Identification of appropriate landscape pattern metrics, 

2. Identification of indicator variable(s) and selecting the appropriate landscape 

pattern metric that best describe the variable(s), and 

3. Interpreting the impacts of the indicator variables on environmental status or 

processes. 
 

The landscape pattern metrics used in these experiments were interpreted as important 

measures of landscape response to environmental pressures, thus tying the landscape pattern 

to the ecological function. Choosing appropriate landscape pattern metrics is a critical first 

stage in these experiments, but the decision on which metric(s) will be appropriate among the 

many published landscape pattern metrics (Neel et al., 2004; Wu, 2004; Wu et al., 2002) was 

made for location and scale specific applications, with the aide of expert knowledge. Further, 

a metric may be shown to be a reliable description of landscape pattern, but when multiple 

metrics are examined, no additional information is gained when a metric is similar or exactly 

the same as another (see Spivey (2011) for further landscape pattern reliability discussion). 

To address these types of problems, Ritters et al. (1995) designed a factor analysis where 

they statistically compared multiple landscape pattern metrics to find how well each metric 

responded to relevant land cover map change. 

In this paper, we further explore the identification of appropriate landscape pattern metrics 

for broad scale and environmental applications, and we describe three new landscape pattern 

metrics based on Fourier analysis. First, we introduce the formulation and rationale for our 

three Fourier landscape pattern metrics. Second, we use a correlation analysis to assess the 

extent to which independent information is provided by a suite of 67 landscape pattern 

metrics, compounded from previously published landscape pattern metrics, plus our three 

new metrics. Third, we use the factor analysis to test which of the landscape pattern metrics 

have the best explanatory value for land cover variability in the National Land Cover 

Database (NLCD). The NLCD informs our metrics with broad variability within the 

48 conterminous Unied States ecoregions. Ecoregions classified into 14 different 

biomes—such as forests, grassland, or deserts. 

Our analysis thus extends the work of Ritters et al. (1995) by testing for both independence 

as well as explanatory power among the metrics over a wide range of land cover types. 

Location and scale specific trade studies are useful for certain applications of landscape 

pattern, whose results may not be able to be generalized. Here, we have identified Landscape 

Pattern Metrics that are statistically useful for general use over a wide variety of land cover 

types, and thus useful for understanding broad scale processes like climate change, 

desertification, and urban sprawl. 
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METHODS 

1992 National Land Cover Data 

This work requires an extensive and diverse spatial dataset on which to apply landscape 

pattern metrics. We use the 1992 United States Geological Survey National Land Cover Data 

(NLCD), which is a 21-category land cover classification scheme that was applied across 

a set of Landsat satellite images of the 48 conterminous United States (Vogelmann et al., 

2001). The NLCD 1992 classification data are provided as 256 x 256 pixel GeoTIFF image 

tiles (see Fig. 1 for an example image tile). At the Landsat spatial resolution of 30 m each tile 

represents 7.68 x 7.68      areas and there are more than 160,000 separate tiles covering 

a very diverse set of 85 ecoregions. These ecoregions are shown in Fig. 2. 

 

Fig. 1: A 256 x 256 tile of the National Land Cover Database (NLCD) in Glens Falls, 

New York, USA. The Anderson et al. (1976) Level II attribute class description and the land 

cover class color code are shown along the right side. 
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Fig. 2: Ecoregions. The 48 conterminous United States consists of 85 of the 867 global 

terrestrial ecoregions. The ecoregions are classified into 14 different biomes—such as 

forests, grassland, or deserts—making ecoregions descriptive of land cover data. 
 

 

 

Landscape Metrics 

Every one of the 67 landscape pattern metrics were applied to each 7.68 x 7.68      
NLCD tile (more than 160,000 tiles). A reference to each landscape pattern metric obtained 

from the literature, as well as the details of each formulation can be found in Appendix A. 

A summary of our three new multiscale Fourier landscape pattern metrics is presented below. 

More details on each of these metrics can be found in Spivey (2011). 

 

Fourier Metric of Proportion (FMP) 

Derived to be an unbiased metric of scale, pixels from the observed land cover class   are 

divided by the total number of land cover pixels being observed: 
 

      ∏   
   

  ∏
                                 

                                       

 
 

   (1) 

In a landscape composed of land cover patches,   would be the total number of patches 

observed, and     the ratio between the number of pixels in the class of interest   and the 

number of pixels in the largest class observed. As a measure of landscape composition, this 

type of denominator references land cover class   pixel counts to the largest, most 

scale-resistant land cover class being observed. 

 

Fourier Metric of Fragmentation (FMF) 

Designed according to the concept of landscape contagion, the Fourier metric of 

fragmentation measures clumping and interspersion between two classes. The ecological 

interpretation of contagion is that it indicates the dynamics between two land cover classes. 
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This landscape configuration metric is reported as the distance between two land cover class 

maps by name (see Spivey & Vodacek (2017) for an example). The           metric 

measures patch adjacencies, making it impossible to measure clumping and interspersion 

between distant classes. This is not a problem for    . These land cover classes are explicit 

in the equation below: 
 

                    
  

 
                                 

                                       
 

(   [  (             )   (√     )]
 

)

   (2) 

 

Here, each land cover     and     are binary class maps of     and    , the Fourier 

operator is shown as     , and the parameters   and   are the image tile number of row 

pixels and column pixels respectively. The equation variables include,      a ratio between 

the total number of pixels in the class of interest and total number of pixels between the two 

classes being compared; and      a variable that includes the LOG Fourier phase difference 

between individual class maps     and    , all log-normalized by the largest distance 

possible in the observed class map (i.e. √     ). The metric parameter   increases or 

decreases the migration rates being modeled by the metric, see Spivey & Vodacek (2017) for 

details. 

 

Yuen et al. (2004) Least Squares Fourier Transform Fractal Dimension Estimation 

For fractal dimension estimation of statistically self-similar land cover classification 

patches, we adopt the method of Yuen et al. (2004) for analyzing the Fourier power spectrum 

of a 1-D signal to our case of a 2-D land cover image. This landscape pattern metric measures 

patch structure. After linearizing the Fourier power spectrum, the Hough transform is used to 

estimate the Hurst dimension   and thereby fractal dimension    . 

The 2-D Fourier power spectrum          for a Fourier fractal signal          is 

statistically equal to the least squares Fourier power spectrum estimator: 
 

                    
 

  
 

                        
   (3) 

 

  is a proportional constant,     is the fractal dimension, and   is the Hurst exponent. 

 

The true fractal signal          and fractal noise       , have power spectrum          

and       , respectively. The composite signal                        has power 

spectrum       : 
 

                           (4) 
 

Solving for          , and taking the logarithm of both sides, linearizes the least squares 

Fourier power spectrum equation: 
 

                                   

    

                                   

   (5) 
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In the last step, fractal noise        is assumed negligible. The least squares Fourier 

transform method for estimating fractal dimension takes advantage of the Hough transform’s 

precision. Each possible linear trend is counted in Hough space, then the most likely linear 

trend is accepted for derivation of the Hurst parameter   and thereby the fractal dimension 

       . 

 

Factor Analysis 

The factor analysis was done in SAS and describes the covariance relationships among 

many landscape pattern metrics in terms of observable, random land cover variability. Since 

a map of land cover is analyzed to create the landscape pattern metric, land cover variability 

is captured in the metric values. The factor analysis uses Principal Component Analysis 

(PCA) to determine these covariance relationships. For a more complete handling of PCA 

refer to Richards & Jia (1996). 

Each image tile produces 67 separate measurements. Using this data, a vector space can be 

created with as many dimensions as there are image tiles, associated with their 67 landscape 

pattern measurements. For an individual tile, the      landscape pattern metrics produce 

a column vector: 

  [

  

  

 
  

]           (6) 

 

By calculating the mean of each landscape pattern metric over the full dataset of land cover 

tiles a mean vector with      elements and a square covariance matrix are formed: 

  [

  

  

 
  

]            (7) 

 

  

[
 
 
 
 
                 

                 

                 

     
                 ]

 
 
 
 

     (8) 

 

The factors that cause these landscape pattern metrics to vary can be multiple, including the 

most obvious land cover variability, there could also be influences from large weather events 

or local public policy. According to the factor analysis, there can be     Factors that 

effect the reported landscape pattern metrics. This is best modeled also as a column vector, 

seen in Equation 9. 

  [

  

  

 
  

]             (9) 

 

The degree of effect for each factor on individual landscape pattern metrics can be 

estimated. This is done using the spectral model shown in Equation 10. 
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  (10) 

 

Equivalently, in matrix form, we have the factor analysis factor model: 
 

        
        

        (11) 

 

This de-meaned data    , is what is used as input into SAS FACTOR analysis statistical 

software. The output is a square matrix of explained variance. 

Each parameter along the diagonal of the   square matrix, is the explained variance for 

the landscape pattern metric of that row. Using each diagonal term, a measure of explained 

variance can be obtained. Equation 12 shows how this estimation of landscape pattern metric 

fidelity would work, using the      elements of the landscape pattern metric covariance 

matrix in Equation 8 above. 
 

  

[
 
 
 
 
        

        

        

     
        ]

 
 
 
 

 

   
    

    
       (12) 

 

 

This metric   tells us how much each factor   explains the variance   of the landscape, 

for the metric  . Because this metric of Expected Correlation Contribution (ECC) describes 

the covariance relationships      among many landscape pattern, and many of the metrics are 

not statistically independent, the sum of the fidelity metric    does not sum up to 100 %. 

That is to say, some metrics vary in the same way as other metrics—those metrics would 

share the same    value. This issue of statistical independence for interpretability is 

discussed in the next section. 

 

Independence of Fourier Landscape Pattern Metrics 

Another way the data were analyzed was to look at the relationship between the 160,000 

tiles. A count of how often each landscape pattern metric was correlated to another is shown 

for increasing degrees of similarity in Figure 3, Figure 4, and Figure 5. The most independent 

metrics are those with near 0 correlation counts. The most independent of these metrics are 

underlined in Table 2. 
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Fig. 3: The number of landscape pattern metrics correlated greater than 70 points. 

Fourier metrics     ,    , and     are correlated to 46, 5, and 12 other landscape 

pattern metrics, respectively. 

 

Fig. 4: The number of landscape pattern metrics correlated greater than 85 points. 

Fourier metrics     ,    , and     are correlated to 29, 5, and 12 other landscape 

pattern metrics, respectively. 
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Fig. 5: The number of landscape pattern metrics correlated greater than 99 points. For 

Fourier metrics     ,    , and     are correlated to 0, 5, and 12 other landscape pattern 

metrics, respectively. 

 

 

The least frequently correlated Fourier metric is     . This small amount of between 

metric correlation is not observed in every Fractal Dimension landscape pattern, like those 

seen in Appendix A.5, A.8, and A.9 of Spivey (2011). Thus      is the most independent 

Fourier description of landscape fractal dimension. The most correlated Fourier metric is 

   . These     results were the least independent Fourier description of landscape 

pattern. The four landscape pattern metrics most correlated to the Fourier metrics are shown 

in Table 1. 

The four leading metrics in Table 1 seem to report redundant Fourier landscape pattern 

information, though none of them have as physical a description of pattern and processes as 

their Fourier relatives. For instance, though     values are very related to     ,    , 

    , and      only     is directly related to and interprets itself along the physical 

migration and extinction rates between land cover patches. Meanwhile, the Contagion      

method has shown itself to be highly dependent on image sensor error and so is unreliable. 

n-Q is an inter-quartile abundance that has only a mathematical, no physical interpretation. 

And, both      and      measure of how different patch sizes are within a landscape, 

using the unreliable nearest-neighbor patch definition (see Sections 3.2.4 and 5.2 of Spivey 

(2011) for a discussion on the errors in this nearest-neighbor approach, and on how 

unreliable Contagion      performance can be). 
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Table 1: The top four landscape pattern metrics most correlated to the Fourier metrics 

when observing seamless conterminous United States NLCD 1992 LCLU 
 

 

 

Table 2: The landscape pattern metrics (LPM) ranked by expected contribution to the 

explanation of seamless conterminous United States 1992 NLCD. This ranking reveals 

how well each metric generally relates to landscape variability, ignoring any ability to 

reliably or relevantly interpret that variability. Highly independent metrics are underlined, 

and the Fourier metrics are in bold. 
 

LPM E.C.C.a LPM E.C.C.a 

P005 97.46%   

FMF 64.76% SIHO 7.75% 

TLAC 61.54% PD 7.39% 

LsFT 50.06% OCFC 7.01% 

ABRA 38.76% RGYR 6.52% 

BETL 33.04% SICO 6.45% 

OIFC 32.05% n-Q 6.28% 

SqP 30.93% PA-1 6.19% 

PVAR 28.35% TVAR 6.09% 

MPFD 27.32% NYTP 6.06% 

PSSD 26.52% DLFD 5.96% 

OIFT 25.11% AWMSI 5.89% 

PLAC 24.80% BRRA 5.88% 

OEFT 18.72% NFTD 5.88% 

OPER 18.59% KT-Q 5.70% 

NASQ 18.35% MCDI 5.67% 

PENT 17.72% OEDG 5.06% 

PMAS 17.72% AWMPFD 4.83% 

PSIZ 17.72% CCRA 4.80% 

SHDI 15.98% PA-2 4.34% 

SHHO 15.46% IEDG 4.22% 

TMAS 15.42% TEDG 4.22% 

SUMD 13.55% PORO 4.22% 

ABFT 13.15% TENT 2.84% 

NACI 11.94% PSCV 2.65% 

FMP 11.81% LOAX 2.54% 

P050 11.67% P500 2.14% 

LSI 10.48% OEFC 2.14% 

DSTA 10.42% SHCO 2.07% 

SIDI 9.67% SHEV 2.03% 

MSI 9.31% OCFT 1.11% 

SIEV 9.07% TE .95% 

PSI 8.82% LPI .61% 

MCEV 7.79% NPAT .23% 
aECC is the Expected Correlation Contribution, as defined in equation 12 above 

 

 

LsFT FMP FMF 

 PORO SHCO DLFD 

TEDG n-Q NASQ 

IEDG PSCV LOAX 

KT-Q LOAX PSCV 
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Explanatory Power of Landscape Pattern Metrics 

To see how well each landscape pattern metric performed using their individual definitions 

for relevant pattern variability we can observe the amount of explained variability each 

metric contributes. The ranking for all Factors is shown in Table 2. The metrics that 

contributed most to explained variability were Jackson’s           statistic (    ) 

typically contributing to 97 % of the explained variability, the Fourier Metric of 

Fragmentation (   ) typically contributing to 65 % of the explained variability, the average 

land cover class lacunarity (     ) typically contributing to 62 % of the explained 

variability, and the Least Squares Fourier Transform Fractal Dimension Estimation (    ) 

typically contributing to 50 % of the explained variability—the Fourier Metric of Proportion 

(   ) typically contributed to about 12 % of the explained variability. While landscape 

pattern metrics like     , and      describe landscape pattern variability well, they both 

fall short of the criteria to measure physical variables, with      also using the image 

sensor error limited nearest-neighbor method (Spivey, 2011). 

ECC is the Expected Correlation Contribution, as defined in equation 12 above. 

 

Summary of Uniqueness of Fourier Landscape Pattern Metrics 

The values reported by each of the proposed Fourier metrics have been shown to be 

independent from commonly used landscape pattern metrics by having a low correlation to 

the other 64 landscape pattern metrics. This landscape metric factor analysis model is useful 

for both developing landscape metrics, and finding landscape descriptors appropriate for 

a landscape ecology. By comparing the Fourier landscape pattern metrics ability to explain 

this dataset we have identified these higher ranking Fourier metrics as capable to describe the 

landscape. If we choose only the Fourier metrics to interpret the landscape, this analysis has 

shown that each would be reporting without redundancy. This approach to identifying 

appropriate landscape pattern metrics for a landscape can be done for any combination of 

landscape pattern metrics. 

These reported Fourier pattern metric values have also shown themselves to be capable to 

explain general landscape pattern variability by contributing to the explained landscape 

variability, again with exceptional results from      and     respectively contributing 

50.06 % and 64.76 % to explained pattern variability. Unlike other landscape pattern metrics 

(see Neel et al. 2004; Wu, 2004; Wu et al., 2002), this is the Fourier metric that has 

performed consistently across landscape scale and geographic region (Spivey, 2011). Table 3 

shows the best of these independent highly informative metrics. Taken from Table 2, these 

ten metrics perform generally better for the conterminous United States. Any combination of 

the resulting landscape pattern metrics in this table are useful for very broad continental scale 

applications, like long term climate change, or land cover land use forecasting across large 

scales. We have tested over a wide variety of land cover land use types and these metrics 

have shown their ability to independently capture relevant landscape variability. 

In a separate paper, Spivey & Vodacek (2017), the relevance of these reliable and unique 

Fourier landscape pattern metrics for connecting an ecological process to landscape pattern 

and interpreting the cause is discussed. 
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Table 3: The landscape pattern metrics (LPM) ranked by highest expected 

contribution to the explanation of NLCD 1992 land cover and that are also highly 

independent metrics. The Fourier metrics are in bold. 
 

LPM E.C.C. 

P005 97.46% 

FMF 64.76% 

LsFT 50.06% 

BETL 33.04% 

MPFD 27.32% 

OIFT 25.11% 

OEFT 18.72% 

SUMD 13.55% 

ABFT 13.15% 

FMP 11.81% 
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APPENDIX 

Landscape Pattern Metrics 

Below lists the metrics used in this analysis. Every Landscape Pattern Metric listed below 

is taken from , unless otherwise referenced. Independent landscape pattern metrics are 

numbered, and the indented metrics are highly correlated to their numerated header. 

1. Number of LCLU classes 

      (Total number of LCLU classes) 

–        
 

2. Shannon evenness of LCLU classes 

      (Simpson diversity of LCLU classes) 

–        ∑   
  

    

  Here,   is the number of LCLU classes, and    is the proportion of each 

LCLU class  . 
      (Simpson evenness of LCLU classes) 

–      
    

  
 

 

 

  Here,   is the number of LCLU classes. See Shannon evenness of LCLU 

classes for     . 

      (Shannon diversity of attribute classes) 

–       ∑   
 
          

  Here,   is the number of LCLU classes, and    is the proportion of LCLU 

class  . 
      (Shannon evenness of LCLU classes) 

–      
    

     
 

  Here,   is the number of LCLU classes. 

      (McIntosh diversity of attribute classes ) 

–      
  √∑   

  
   

  √ 
 

  Here,   is the number of LCLU classes,   is the total number of pixels in the 

landscape, and    is the total number of pixels in LCLU class  . 

      (McIntosh evenness of attribute classes) 

–      
  √∑   

  
   

  
 

√ 

 

  Here,   is the number of LCLU classes,   is the total number of pixels in the 

landscape, and    is the total number of pixels in LCLU class  . 

      (Shannon homogeneity of the adjacency matrix) 

      ∑∑   

 

   

 

   

       [       ]

  ∑∑
                

 

 

   

 

   

  [
                

 
]
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  Here,   is the number of LCLU classes,   is the total number of pixels in the 

landscape, and                  the total number of horizontal and vertical 

edge pixels shared by LCLU classes   and  . 
      (Simpson homogeneity of adjacency matrix ) 

–        ∑ ∑ (
                

 
)

 
 
   

 
    

  Here,   is the number of LCLU classes,   is the total number of pixels in the 

landscape, and                  the total number of horizontal and vertical 

edge pixels shared by LCLU classes   and  . 
   

3. Kempton-Taylor Q-statistic 

      (The inter-quartile slope of the cumulative LCLU abundance curve ) 

–      

   
 

 
   

 
 ∑   

    
      

  [
  
  

]
, 

  where    is the number of LCLU classes with abundance  ,   ;    are the 

     and      quartiles: 

        
    the number of pixels in the LCLU class where 

    falls—the          percentile number of pixels        
     

the number of pixels in the LCLU class where    falls—the 

            percentile number of pixels 

The quartiles are chosen such that, 

  ∑   
    
    

 

 
 ∑   

  
   , 

and 

  ∑   
    
    

   

 
 ∑   

  
   . 

where   is the number of LCLU classes. 

   

4. Shannon           

      (Shannon          ) 

–        
    

       
           

  Here,   is the number of LCLU classes. See Shannon evenness of LCLU 

classes for     . 

      (Simpson          ) 

–      
    

  
 

  

 

  Here,   is the number of LCLU classes. See Shannon evenness of LCLU 

classes for     . 

   

5. Sum of LCLU adjacencies 

      (Sum of adjacencies for one LCLU class ) 

–      ∑   
 
           

  Here,   is the number of LCLU classes, and           are the total 

horizontal and vertical edges of LCLU class  . 
–      (Average fractal estimator of LCLU class configurational entropy from 

the scaling of LCLU class density to the size of the neighborhood of an arbitrary 

pixel in the class) 
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–          is the probability of finding   other pixels of the same LCLU class, in 

an     kernel, centered on an arbitrarily chosen pixel. 

           
       

  
 

  where         is the number of     kernels that had   pixels of the same 

LCLU class  , and    is the number of pixels in LCLU class  . 

    Letting       be the maximum number of pixels, of the same LCLU 

class  , observed in any     kernel: 

               ∑   
     

                

    From each LCLU class with      pixels, a random sample of at least 

    pixels are selected. Square kernels of size  =5, 15, 25, 35, and 45 are 

placed around each sampled pixel and the occurrence of pixels of the same 

LCLU class are counted for each kernel size. Letting      be the estimated 

slope from the regression of              on       for the     LCLU 

class, the fractal estimator is: 

       ∑
  

 

 
        

    Here,   is the number of LCLU classes,   is the total number of pixels 

in the landscape, and    is the total number of pixels in LCLU class  . 

      (Fractal estimator of LCLU class mass from the scaling of LCLU class 

density to the size of a neighborhood of an arbitrary pixel in the class.) 

–          is the probability of finding   other pixels of the same LCLU 

class, in an     kernel, centered on an arbitrarily chosen pixel. 

           
       

  
 

  where         is the number of     kernels that had   pixels of the same 

LCLU class  , and    is the number of pixels in LCLU class  . 

    Letting       be the maximum number of pixels, of the same LCLU 

class  , observed in any     kernel: 

               ∑  
     

             

    From each LCLU class with      pixels, a random sample of at least 

    pixels are selected. Square kernels of size  =5, 15, 25, 35, and 45 are 

placed around each sampled pixel and the occurrence of pixels of the same 

LCLU class are counted for each kernel size. Letting      be the estimated 

slope from the regression of   [            ] on       for the     

LCLU class. The fractal estimator is: 

       ∑
  

 

 
        

    Here,   is the number of LCLU classes,   is the total number of pixels 

in the landscape, and    is the total number of pixels in LCLU class  . 

–      (Fractal estimator of LCLU class variance from the scaling of LCLU 

class density to the size of the neighborhood of an arbitrary pixel in the class) 

–          is the probability of finding   other pixels of the same LCLU 

class, in an     kernel, centered on an arbitrarily chosen pixel. 

           
       

  
 

  where         is the number of     kernels that had   pixels of the same 

LCLU class  , and    is the number of pixels in LCLU class  . 
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    Letting       be the maximum number of pixels, of the same LCLU 

class  , observed in any     kernel: 

               ∑        

            

    From each LCLU class with      pixels, a random sample of at least 

    pixels are selected. Square kernels of size  =5, 15, 25, 35, and 45 are 

placed around each sampled pixel and the occurrence of pixels of the same 

LCLU class are counted for each kernel size. Letting      be the estimated 

slope from the regression of   [            ] on       for the     

LCLU class. The fractal estimator is: 

       ∑
  

 

 
        

    Here,   is the number of LCLU classes,   is the total number of pixels 

in the landscape, and    is the total number of pixels in LCLU class  . 

      (Weighted average proportion of pixels contained in patches with area     

pixels) 

–      ∑
  

 

 
   

∑   
 

  
   

∑   
  
   

 

  where   is the number of LCLU classes,   is the total number of pixels in the 

landscape,    is the total number of pixels in the LCLU class  ,    is the total 

number of nearest-neighbor patches of LCLU class  , and    is the total 

number of pixels in patch  . 

    
  {

           
             

 

      (Weighted average proportion of pixels contained in patches with area 

     pixels) 

–      ∑
  

 

 
   

∑   
 

  
   

∑   
  
 

 

  where   is the number of LCLU classes,   is the total number of pixels in the 

landscape,    is the total number of pixels in the LCLU class  ,    is the total 

number of nearest-neighbor patches of LCLU class  , and    is the total 

number of pixels in patch  . 

    
  {

            
             

 

6. Average LCLU class lacunarity 

      (Average LCLU class lacunarity from the scaling of class density with kernel 

size) 

–                

  See, Sum of LCLU adjacencies 

7. Average proportion of area in patches larger than 5 pixels 

      (Weighted average proportion of pixels contained in patches with area    

pixels—Jackson’s           statistic ) 

–      ∑
  

 

 
   

∑   
 

  
   

∑   
  
 

 

  where   is the number of LCLU classes,   is the total number of pixels in the 

landscape,    is the total number of pixels in the LCLU class  ,    is the total 
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number of nearest-neighbor patches of LCLU class  , and    is the total 

number of pixels in patch  . 

    
  {

          
             

 

8. Perimeter-area scaling, patch perimeter complexity 

      (Fractal estimator of patch perimeter complexity from perimeter-area 

scaling enclosing edges basis ) 

–           

  where    is the estimated slope from the regression of the natural log of 

left-diagonal and right-diagonal patch edge pixels,                     , 

on the natural logarithm of the total number of pixels in LCLU patch  , 

      , for all nearest-neighbor patches greater than 3 pixels,     , that 

do not touch the border of the LCLU map. 

      (Fractal estimator of patch perimeter complexity from perimeter-area 

scaling, all edges basis) 

–           

  where    is the estimated slope from the regression of left-diagonal, 

right-diagonal, horizontal, and vertical patch edge pixels, 

                               , on the natural logarithm of the total 

number of pixels in LCLU patch  ,       , for all nearest-neighbor 

patches greater than 3 pixels,     , that do not touch the border of the 

LCLU map. 

      (Fractal estimator of patch perimeter complexity from perimeter-area 

scaling, enclosing pixels basis) 

–           

where    is the estimated slope from the regression of the left-diagonal, 

right-diagonal, horizontal, and vertical patch edge pixels complement, 

                                            
   

on the natural logarithm of the total number of pixels in LCLU patch  , 

      , for all nearest-neighbor patches greater than 3 pixels,     , that 

do not touch the border of the LCLU maps. 

9. Perimeter-area scaling, patch topology transformation, enclosing pixel basis 

      Fractal estimator of patch topology from perimeter-area scaling, enclosing 

edges basis  

–      
 

  
 

  where    is the estimated slope from the regression of the natural log of 

left-diagonal and right-diagonal patch edge pixels,                     , 

on the natural logarithm of the total number of pixels in LCLU patch  , 

      , for all nearest-neighbor patches greater than 3 pixels,     , that 

do not touch the border of the LCLU map. 

      Fractal estimator of patch topology from perimeter-area scaling, all edges 

basis. 

–      
 

  
 

  where    is the estimated slope from the regression of left-diagonal, 

right-diagonal, horizontal, and vertical patch edge pixels, 

                               , on the natural logarithm of the total 

number of pixels in LCLU patch  ,       , for all nearest-neighbor 
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patches greater than 3 pixels,     , that do not touch the border of the 

LCLU map. 

      Fractal estimator of patch topology from perimeter-area scaling, enclosing 

pixels basis. 

–      
 

  
 

  where    is the estimated slope from the regression of the left-diagonal, 

right-diagonal, horizontal, and vertical patch edge pixels complement, 

                                        
   

  on the natural logarithm of the total number of pixels in LCLU patch  , 

      , for all nearest-neighbor patches greater than 3 pixels,     , that 

do not touch the border of the LCLU maps. 

10. Patch area-bounding circle scaling 

      (Fractal estimator of patch topology from area-bounding rectangular kernel 

scaling) 

–         

  where    is the estimated slope from the regression of the natural 

logarithm of the total number of pixels in the LCLU patch  ,       , on 

the natural logarithm of the largest rectangular kernel side length 

difference    from a box bounding a patch   is: 

       [   (              )] 

  Here,                is the rectangular kernel size that fits over patch  . 

This is for all nearest-neighbor patches greater than 3 pixels,     , that 

do not touch the border of the LCLU maps. 

11. Patch perimeter complexity from the scaling of Euclidean distance to actual 

distance along large patch perimeters 

      (Fractal estimator of perimeter complexity from scaling the average patch 

edge to variable square kernel size ) 

–      
 

 ̂
∑

 

   ̂

 ̂
 ̂   

  where    ̂ is the estimated box-counting fractal dimension of the  ̂  
 

patch—only for patches with area       —using the average 

Euclidean distance   ̂ from patch  ̂ centroid    ̂   ̂
  to a     patch 

bounding-box, or patch perimeter (whichever comes first) regression, 

     ̂  on the natural logarithm of bounding-box perimeter,           
   , or patch  ̂,             ̂                         , perimeter 

             . 
  Ritters describes the procedures as follows. For each patch meeting the 

minimum 400 pixel area (  ̂     ) constraint, the average Euclidean 

distance    along the perimeter is found for actual distances      8, 16, 

32, 64, 128, and 512 bounding-box pixels. The proportions of patch 

perimeters that touched the map border are excluded. 

   

  The expression for average patch centroid Euclidean distance is: 

    ̂  
 

  ̂
∑   ̂

 ̂
 ̂   

  where the patch  ̂ distances   ̂ are for all  ̂         ̂ pixels, and are 

normalized by the  ̂ patch area   ̂. 

  Within patch distances are expressed as: 
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    ̂  √∑ ∑         ̂ 
       

 ̂
   

  for every pixel               ̂ within patch  ̂, for the total number 

of nearest-neighbor patches  ̂ patches. 

12. Metric of large-patch ’mass’ from the scaling of patch density with neighborhood 

size 

    (Patch density. The number of patches (units:     ) ) 

–    
 

       
 

  where   is the total number of nearest-neighbor patches, and    is the 

total number of pixels in a square landscape (units:    ). 

      (Fractal estimator of patch configurational entropy from the scaling of patch 

density to the size of a neighborhood of an arbitrary pixel in the patch ) 

–        
   is the probability of finding   other pixels of the same LCLU 

class, in an     kernel, centered on an arbitrarily chosen pixel. For example, 

         
   is the probability of finding two more pixels of a patch in a     

square centered on an arbitrary pixel in the patch. In general, 

         
   

    

  
  

  where      is the number of     kernels that had   pixels of the same LCLU 

class, and    is the number of pixels in LCLU class  . 

  Letting       be the maximum number of pixels of the same LCLU class  , 

observed in any     kernel: 

            
    ∑   

     

              
   

  From each patch with size      pixels, a random sample of at least 400 pixels 

was selected. 

    
  {

            
             

 

  Square kernels of size      15, 25, 35, and 45 are placed around each sampled 

pixel, and the occurrences of pixels of the same patch were counted for each 

kernel size. The values of        
   and           

    were calculated after the 

counts are accumulated for all sampled pixels. Letting    ̂ be the estimated 

slope from the regression of           
    on       for the  ̂  

 patch. The 

fractal estimator is: 

       
 

 ̂
∑    ̂

 ̂
 ̂   

  where,  ̂ is the total number of nearest-neighbor patches. 

      (Fractal estimator of patch mass from the scaling of patch density to the size 

of a neighborhood of an arbitrary cell in the patch ) 

–        
   is the probability of finding   other pixels of the same LCLU 

class, in an     kernel, centered on an arbitrarily chosen pixel. For example, 

         
   is the probability of finding two more pixels of a patch in a     

square centered on an arbitrary pixel in the patch. In general, 

         
   

    

  
  

  where      is the number of     kernels that had   pixels of the same LCLU 

class, and    is the number of pixels in LCLU class  . 

  Letting       be the maximum number of pixels of the same LCLU class  , 

observed in any     kernel: 
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    ∑  

     

           
   

  From each patch with size      pixels, a random sample of at least 400 pixels 

was selected. 

    
  {

            
             

 

  Square kernels of size      15, 25, 35, and 45 are placed around each sampled 

pixel, and the occurrences of pixels of the same patch were counted for each 

kernel size. The values of        
   and           

    were calculated after the 

counts are accumulated for all sampled pixels. Letting    ̂ be the estimated 

slope from the regression of           
    on       for the  ̂  

 patch. The 

fractal estimator is: 

       
 

 ̂
∑    ̂

 ̂
 ̂   

  where,  ̂ is the total number of nearest-neighbor patches. 

      (Fractal estimator of patch variance from the scaling of patch density to the 

size of a neighborhood of an arbitrary pixel in the patch ) 

–        
   is the probability of finding   other pixels of the same LCLU class, in 

an     kernel, centered on an arbitrarily chosen pixel. For example, 

         
   is the probability of finding two more pixels of a patch in a     

square centered on an arbitrary pixel in the patch. In general, 

         
   

    

  
  

  where      is the number of     kernels that had   pixels of the same LCLU 

class, and    is the number of pixels in LCLU class  . 

  Letting       be the maximum number of pixels of the same LCLU class  , 

observed in any     kernel: 

            
    ∑        

           
   

  From each patch with size      pixels, a random sample of at least 400 pixels 

was selected. 

    
  {

            
             

 

  Square kernels of size     15, 25, 35, and 45 are placed around each sampled 

pixel, and the occurrences of pixels of the same patch were counted for each 

kernel size. The values of        
   and           

    were calculated after the 

counts are accumulated for all sampled pixels. Letting    ̂ be the estimated 

slope from the regression of           
    on       for the  ̂  

 patch. The 

fractal estimator is: 

       
 

 ̂
∑    ̂

 ̂
 ̂   

where,  ̂ is the total number of nearest-neighbor patches. 

13. Average large-patch lancunarity from the scaling from the scaling of patch density 

with neighborhood size 

      (Average large-patch lancunarity) 

–                

  See Metric of large-patch ’mass’ from the scaling of patch density with 

neighborhood size. 

14. Number of patches 

      (Number of patches ) 
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–        

  where   is the number of nearest-neighbor patches in the LCLU map. 

15. Largest patch index 

     (The ratio of area of the largest patch to the total area of the landscape 

(unit: %)) 

–     
       

 
 

  where   is the total number of pixels in the landscape, and    is the total 

number of pixels in nearest-neighbor patch  . 

16. Average patch size or area 

      (Average patch size or area ) 

–      
 

 
∑   

 
    

  where   is the total number of nearest-neighbor patches, and    is the total 

area of patch  . 

17. Patch size coefficient of variation 

      (The standard deviation of patch size divided by mean patch size for the 

entire landscape (unit:%)) 

–      
    

    
 

  See Average patch size or area for      and Patch size standard deviation for 

    . 

18. Total edge 

    (The sum of the lengths of all edge segments (unit: m) ) 

–                            

  Here, the left-diagonal, right-diagonal, horizontal, and vertical LCLU map edge 

pixels are      ,       ,     , and       respectively. 

19. Average patch radius of gyration 

      (Average number of edges enclosing a patch—’outside edges’) 

–      
 

 
∑   

 
                  

  where   is the total number of nearest-neighbor patches, and                  

are left-diagonal and right-diagonal patch   edge pixels. 

      (Average total number of perimeter edges, or ’perimeter length’, per patch) 

–                

  See Average number of inside edges per patch for      and Average patch 

radius of gyration for     . 

      (Average number of pixels enclosing a patch—’outside pixels’) 

–      
 

 
∑   

  
    

  where   is the total number of nearest neighbor patches, and all patch   

nearest-neighbor pixels that are not left-diagonal, right- diagonal, horizontal, or 

vertical edge pixels are   
  (                              ). 

      (Average radius of gyration ) 

–      
 

 
∑   

 
    

  The patch centroid       
  is used to find the radius of gyration    of patch  : 

     √∑ ∑          
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  for every pixel              within nearest-neighbor patch  , for the 

total number of nearest-neighbor patches  . 

      (Average length of long axis) 

–      
 

 
∑       

 
    

  where   is the total number of nearest-neighbor patches, and        is the 

longest horizontal diameter of patch  . 

20. Average number of inside edges per patch 

      (Average number of edges between a patch and its inclusions—’inside 

edges’) 

–      
 

 
∑   

 
                

  where   is the total number of nearest-neighbor patches, and                
are horizontal and vertical patch   edge pixels. 

21. Landscape shape index 

     (A modified perimeter-area ratio) 

–     
           

√ 
 

  where   is the total number of pixels in the landscape, and        is the total 

number of nearest-neighbor patch edges (unitless). See Average patch radius of 

gyration for   . 

22. Mean patch shape index 

     (A patch-level shape index averaged over all patches in the landscape) 

–     
 

 
∑

           

√  

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and        is the total number of patch edges (unitless). See Average 

patch radius of gyration for   . 

23. Area-Weighted mean patch shape index 

       (Mean patch shape index weighted by relative patch size) 

–       ∑
           

√  

 
    

  

 
 

where   is the total number of pixels in the landscape,   is the total number of 

nearest-neighbor patches,    is the total area of patch  , and        is the total 

number of patch edges (unitless). See Average patch radius of gyration for   . 

24. Double-Log fractal dimension 

      (The fractal dimension of the entire landscape) 

– Twice the inverse regression line slope between the logarithm of patch area and 

the logarithm of patch perimeter: 

         (
  ∑   

 
                  ∑   

 
       

  ∑   
 
             (∑   

 
            )

)

  

 

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and        is the total number of patch edges (unitless). See Average 

patch radius of gyration for   . 

25. Mean patch fractal dimension 

      (The average fractal dimension of individual patches in the landscape) 

– The summation of fractal dimension for all patches divided by the total number 

of patches in the landscape: 

       
 

 
∑
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where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and        is the total number of patch edges (unitless). See Average 

patch radius of gyration for   . 

26. Area-weighted mean patch fractal dimension 

        (The patch fractal dimension weighted by relative patch area) 

–        ∑
                 

      

 
    

  

 
 

where   is the total number of pixels in the landscape,   is the total number of 

nearest-neighbor patches,    is the total area of patch  , and        is the total 

number of patch edges (unitless). See Average patch radius of gyration for   . 

27. Square pixel index 

     (A normalized perimeter-area ratio ) 

–       
 √ 

    
 

where   is the total number of pixels in the landscape, and    are all 

left-diagonal, right-diagonal, horizontal, and vertical edge pixels in the 

landscape (unitless). See Average patch radius of gyration for   . 

28. Average patch perimeter-area ratio 

      (Average nearest-neighbor perimeter-area ratio) 

–      
 

 
∑

                

  

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and                  are left-diagonal and right-diagonal patch   edge 

pixels. 

29. Average patch adjusted perimeter-area ratio 

      (Average adjusted perimeter-area ratio ) 

–      
 

 
∑

                      

√  

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and                  are left-diagonal and right-diagonal patch   edge 

pixels. 

30. Average patch normalized area, square model 

      (Average normalized area, circular model) 

–      
 

 
∑

     

                
 

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and                  are left-diagonal and right-diagonal patch   edge 

pixels. 

      (Average normalized area, square model) 

–      
 

 
∑

     

                
 

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and                  are left-diagonal and right-diagonal patch   edge 

pixels. 

      (Average bounding rectangle ratio) 

–      
 

 
∑

  

  

 
    

where 

                    



Spivey A., Vodacek A.: Multiscale Fourier Landscape Pattern Indices for Landscape EcologyAAAAAAAAAAAA 
 

30 

Here,   is the total number of nearest-neighbor patches,    is the total area of 

patch  ,        and         are respectively the rectangular kernel horizontal 

and vertical sides that fit over patch  . 

31. Average patch topology ratio 

      (Average topology ratio) 

–      
 

 
∑  

 
    

(  
   √  )

(        √  )
 

where   is the total number of nearest-neighbor patches, and    is the total 

area of patch   

32. Average patch ratio of number of inside edges of area 

      (Average ratio of number of inside edges to area) 

–      
 

 
∑

              

  

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and                are horizontal and vertical patch   edge pixels. 

33. Average patch adjusted perimeter-area ratio 

      (Average adjusted area-perimeter ratio—Gardner’s D-statistic) 

–      
 

 
∑

    

  [                ]

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and                  are left-diagonal and right-diagonal patch   edge 

pixels. 

      (Average ratio of area to largest bounding rectangle dimension) 

–      
 

 
∑

      

  

 
    

Here,   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and the largest and smallest rectangular kernel side length differences 

   that would cover a patch   is: 

       [   (              )]. 
34. Average ratio of patch area to area of the circumscribing circle 

      (Average ratio of area to the area of a circumscribing circle  

–      
 

 
∑

  

 (
      

 
)
 

 
    

where   is the total number of nearest-neighbor patches,    is the total area of 

patch  , and        is the longest horizontal diameter of patch  . 

 


