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ABSTRACT 

Understanding the relationship between vegetation cover and land surface temperature is 

vital for analyzing landscape structure and addressing climate-related challenges. While 

extensive research has focused on the scale of effect in multi-scale analyses, the impact of 

spatial extent shape on LST-vegetation correlations remains largely unexplored, representing 

a global knowledge gap. Most studies rely on circular or square shapes, overlooking how 

different geometries may alter analytical outcomes. This study aims to investigate how 

spatial extent shapes influence the correlation between LST and the Normalized Difference 

Vegetation Index. Using data from western Iran, we analyzed five geometric 

shapes—circular, square, elliptical, hexagonal, and diamond—at multiple spatial extents 

ranging from 90 to 990 meters, applying Pearson’s correlation and statistical tests. Our 

findings reveal that while circular, square, and elliptical shapes yield similar results, 

hexagonal and diamond shapes introduce significant variations, particularly at smaller 

extents, with p-values as low as 0.00. Additionally, we observed that the correlation between 

land surface temperature and the Normalized Difference Vegetation Index strengthens as the 

spatial extent increases, peaking at 990 meters. These results demonstrate that the choice of 

spatial extent shape can significantly impact the interpretation of LST-vegetation 

relationships, highlighting the need to move beyond traditional circular or square extents. 

This study provides novel insights into spatial data aggregation methods and offers 

a framework for enhancing landscape analysis globally. By emphasizing the importance of 

spatial geometry in ecological studies, the findings hold relevance for landscape ecologists, 

urban planners, and environmental researchers seeking to refine multi-scale analyses and 

improve landscape-scale decision-making worldwide. 
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INTRODUCTION 

Landscape ecologists often seek to understand how environmental factors influence 

biological responses, such as species abundance, within a given spatial context (Newman 

et al., 2019). This relationship hinges on the spatial scale or extent at which environmental 

variables are measured, as it directly affects the strength and significance of the observed 

effects (Carpentier & Martin, 2021; Jackson & Fahrig, 2012; Newman et al., 2019). The 

"scale of effect," or the spatial extent at which the relationship between an environmental 

variable and a biological response is most pronounced, is a fundamental concept in landscape 

ecology (Miguet et al., 2016). However, identifying the optimal scale for a given ecological 
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process remains a challenge, as it often depends on a complex interplay of species traits, 

landscape structure, and methodological approaches (Gabriel et al., 2010; Mayer & 

Cameron, 2003). 

In landscape ecology, grain and extent are fundamental concepts that define the spatial 

scale at which ecological patterns and processes are analyzed (Turner, 1989a). Grain refers to 

the smallest spatial unit of measurement or resolution, such as the pixel size in raster data, 

and determines the level of detail captured in the analysis. Fine-grained data provide detailed 

insights into small-scale features and spatial heterogeneity, often showing higher levels of 

fragmentation and complexity, while coarse-grained data aggregate details into broader 

patterns, simplifying the landscape (Lin et al., 2021). The choice of grain size significantly 

influences landscape metrics like patch density and edge density, which tend to vary with 

resolution, requiring careful selection to match the ecological question (Alhamad et al., 

2011).  

Extent, on the other hand, refers to the total area or spatial coverage of the study, ranging 

from small local areas to entire regions (Turner, 1989a). Larger extents encompass greater 

landscape variability and reveal broader ecological trends, such as habitat connectivity or 

species dispersal patterns, while smaller extents focus on localized processes. The interaction 

between grain and extent shapes the overall scale of analysis, influencing the ability to detect 

ecological relationships and patterns (Šímová & Gdulová, 2012). Fine grains combined with 

large extents offer comprehensive analyses but demand high computational resources, 

whereas coarse grains and small extents risk losing critical details. The relationships between 

environmental variables and biological responses are often scale-dependent (Agrawal, 2020), 

with variations occurring across both grain and extent, making their careful selection 

essential for robust analyses. Together, grain and extent serve as the spatial framework for 

understanding and modeling landscape structure and ecological dynamics, influencing the 

generalizability and comparability of findings in landscape ecology (Suárez-Castro et al., 

2018). 

Therefore, the selection of grain size and spatial extent plays a pivotal role in landscape 

ecology. Both can significantly influence landscape metrics, with finer-grained data often 

appearing more fragmented and complex than coarser-grained data (Francis & Klopatek, 

2000; Šímová & Gdulová, 2012). Despite advancements in remote sensing and 

computational tools, variability in scale choices across studies has limited the comparability 

of findings and hindered the development of general scaling laws. For example, Mayer & 

Cameron (2003) found that only 61 % of studies explicitly reported their chosen grain size 

and extent, with decisions often driven by pragmatic considerations rather than 

methodological appropriateness. This inconsistency underscores the need for more 

structured and standardized approaches to scale selection in landscape studies to advance the 

field. Adding to the complexity, recent research has demonstrated that the thematic 

resolution of data—how landscape categories are defined—also affects the values of 

landscape metrics. Šímová & Gdulová (2012) emphasize that simple, interpretable metrics 

such as the number of patches (NP), patch density (PD), and edge density (ED) are the most 

robust for analyzing landscape structure across varying scales. However, the integration of 

thematic resolution with spatial scaling remains underexplored, leaving significant gaps in 

understanding how these factors interact to shape ecological patterns. 

Beyond issues of grain size and extent, the concept of extent shape has received limited 

attention. While circular and square buffers are commonly used for landscape analyses, their 

influence on landscape metrics and ecological interpretations remains poorly understood. 

Extent shape can affect the aggregation of spatial data, altering metrics like patch density, 

edge length, and connectivity, which are critical for assessing ecological processes (Francis 
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& Klopatek, 2000; Šímová & Gdulová, 2012). This knowledge gap is particularly relevant 

when examining relationships such as those between land surface temperature (LST) and 

vegetation cover, represented by the normalized difference vegetation index (NDVI). 

Although studies like Rahimi et al. (2021), Rahimi & Jung (2025) and Zhou & Cao (2020) 

have explored the LST-NDVI relationship across varying spatial extents, they primarily 

focus on extent size rather than shape, leaving an opportunity to further investigate how 

extent shape influences these correlations. 

Determining the optimal scale for a specific environmental variable and biological or 

non-biological response is typically not straightforward (Newman et al., 2019; Turner, 

1989b). One method to identify the scale of effect involves empirical data analysis in 

a multi-scale study (Frazier, 2023; Lechner & Rhodes, 2016; Wu & Qi, 2000) (Fig. 1). Here, 

the environmental variable is assessed across various spatial extents surrounding each 

sampled location of the dependent variable. Usually, circular (Fig. 1-A) or square (Fig. 1-B) 

buffers are commonly used for calculating landscape variables due to a lack of prior 

knowledge about more complex shapes (Peng et al., 2010; Saura & Martinez-Millan, 2001; 

Wu et al., 2002). Subsequently, a statistical model, often employing linear regression, is 

applied for each spatial extent to relate the environmental variable to the biological response 

(Jackson & Fahrig, 2015). The scale of the effect is then determined as the spatial extent that 

yields the most optimal model based on a predefined criterion, such as Pearson's correlation 

coefficient (r) (Miguet et al., 2016). 

The circular or square nature of this shape can impact the correlation between the response 

variable and the independent variable. As depicted schematically in Figure 1, assuming our 

landscape comprises vegetation (green cells), the choice between circular and square buffers 

results in varying vegetation areas, even when maintaining equal diameters (Fig. 1-C) or 

widths (Fig. 1-D). This discrepancy can influence factors like the number of patches, the 

distance between them, and overall landscape composition and configuration within each 

buffer. Consequently, the shape of the spatial extent holds the potential to alter our perception 

of the relationship between dependent and independent variables, particularly in multi-scale 

analyses. 

Given these gaps, our study aims to explore the underexamined influence of spatial extent 

shape on the relationship between LST and NDVI. We hypothesize that extent 

shape—whether circular, square, or more complex geometries—significantly affects the 

interpretation of landscape metrics and their correlations with ecological variables. 

Specifically, our first hypothesis proposes that the shape of the spatial extent has 

a measurable impact on the correlation between LST and NDVI, with non-circular shapes 

(e.g., hexagonal, diamond) yielding distinct patterns compared to standard shapes like 

circular and square extents. Furthermore, the second hypothesis posits that as the spatial 

extent size increases, the correlation between LST and NDVI strengthens consistently across 

all extent shapes, although the differences between shapes diminish at larger scales.  

By analyzing LST and NDVI relationships across multiple spatial extents and shapes, we 

seek to advance the understanding of how spatial geometry influences landscape dynamics. 

Our findings will contribute to the broader goal of integrating spatial, temporal, and thematic 

dimensions into landscape ecology, ultimately improving the field's ability to address 

pressing conservation challenges. 

 

 

 

 



                                                          aaaJournal of Landscape Ecology (2025), Vol: 18 / No. 1 
 

117 

Fig. 1: A theoretical multi-scale study setup: 

(a) and (b) assessing landscape structure across various spatial extents using different shapes. 

(c) and (d) the proportion of vegetation cover varies based on the chosen shape of the spatial 

extent. 

 

 
 

 

METHODS 

Study area 

We selected the western regions of Isfahan City, including Najaf Abad, Qahdrijan, and 

Flowerjan, for their diverse vegetation cover, ranging from dense to sparse. This variation 

provides an ideal setting to investigate correlations between NDVI and LST. 
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Fig. 2: Study area location in Iran.  

(a) NDVI, and (b) color composite of bands 4,3,2 in August 2009 (Landsat 5 TM).  

 

 

 

Spatial data 

NDVI calculation 

When assessing landscape patterns within a continuous framework, it's imperative to 

utilize indices that accurately portray landscape characteristics. In our study, we opted to use 

the Normalized Difference Vegetation Index (NDVI) as an alternative indicator of landscape 

attributes. NDVI proves particularly effective in delineating green vegetation biomass, 

owing to its capability to detect strong absorption in the red region (Band 3) and robust 

reflection in the near-infrared band (Band 4) ) (Fan & Myint, 2014). Recognized and utilized 

extensively, NDVI stands as the most prevalent index across a spectrum of applications, 

spanning from vegetation monitoring to urban sprawl analysis (Nolè et al., 2014).   

 

NDVI =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷 
                                   (1) 

 

Where Red and NIR stand for the spectral reflectance measurements acquired in the red 

(visible) and near-infrared regions, respectively. 

 

LST calculation 

Objects with temperatures above absolute zero Kelvin emit thermal electromagnetic 

energy. The signals captured by the thermal sensors of Landsat TM are recorded and 

expressed as digital numbers (DN). Equation (2) is employed to transform these digital 

numbers into space-reaching radiance or top-of-atmosphere (TOA) radiance, which is 

measured by the instrument (Oguz, 2013).  

 

𝐿𝜆 =
(𝐿𝑚𝑎𝑥− 𝐿𝑚𝑖𝑛)

(𝑄𝐶𝐴𝐿𝑚𝑎𝑥− 𝑄𝐶𝐴𝐿𝑚𝑖𝑛)
(𝐷𝑁 −  𝑄𝐶𝐴𝐿𝑚𝑖𝑛) +  𝐿𝑚𝑖𝑛   (2) 

  

a b 
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Where λ is TIR band 6; 𝐿λis the Top of-Atmosphere (TOA) radiance at the sensor’s 

aperture in W m−2 sr−1μm−1; 𝑄𝐶𝐴𝐿𝑚𝑖𝑛 =  1, the least value in the range of rescaled 

radiance in DN; 𝑄𝐶𝐴𝐿𝑚𝑎𝑥  = 255, the highest value in the range of rescaled radiance in DN; 

𝐿𝑚𝑎𝑥= 15.303; 𝐿𝑚𝑖𝑛= 1.238.  

 

Spectral Radiance (L) to Temperature in Kelvin can be expressed as: 

 

𝑇𝐵 =  
𝐾2

𝑙𝑛 (
𝐾1

𝐿
+ 1)

 

 

Where, 𝐾1 = Calibration Constant 1 (607.76), 𝐾2 = Calibration Constant 1 (1260.56), TB 

= Surface Temperature. 

 

Extent Shape effects on the LST-NDVI relationship 

To test the first hypothesis, which posits that the shape of the spatial extent significantly 

influences the correlation between LST and NDVI, we began by generating 30,000 random 

points across the study area using ArcGIS software. Around each point, we created buffers in 

five distinct geometric shapes—circular, square, elliptical, hexagonal, and diamond—chosen 

to represent varying degrees of complexity in spatial aggregation. Circular buffers were 

defined by a fixed radius, creating symmetrical areas around the points, while square buffers 

aligned with raster grids to examine square-shaped extents. Elliptical buffers extended the 

concept of circular buffers by varying radii along two axes to incorporate directional 

variation. Hexagonal buffers provided six-sided polygons that are often more natural in 

spatial representation, and diamond buffers, constructed using Manhattan distances, formed 

distinct diamond-shaped geometries. For each buffer, we extracted mean LST and NDVI 

values from the raster datasets, which served as the basis for calculating correlations between 

the two variables. 

To assess the first hypothesis statistically, we calculated Pearson’s correlation coefficients 

for each buffer shape, quantifying the strength of the LST-NDVI relationship for every 

geometric configuration. To determine whether buffer shape significantly affected these 

correlations, paired t-tests were conducted between all combinations of shapes. For instance, 

we compared circular buffers with square buffers or hexagonal buffers with diamond buffers 

to identify significant differences in the resulting correlations. The null hypothesis for these 

tests was that the mean difference in correlation values between two shapes was greater than 

or equal to zero, suggesting no significant difference. The alternative hypothesis proposed 

that the mean difference was less than zero, indicating a significant difference between 

shapes. The statistical significance of these comparisons was determined using p-values, 

with a threshold of 0.05. If the p-values fell below this threshold, the differences in 

correlation values between the shapes were considered statistically significant, thereby 

supporting the hypothesis that buffer shape influences the LST-NDVI relationship. 

The second hypothesis suggested that as the spatial extent size increases, the correlation 

between LST and NDVI strengthens consistently across all extent shapes, and the differences 

between shapes diminish at larger scales. To test this hypothesis, we generated buffers for 

each shape at 31 spatial extents ranging from 90 meters to 990 meters, with increments of 30 

meters. For circular buffers, extent size was defined by the radius, while for square buffers it 

was defined by the side length. Equivalent measures were applied for elliptical, hexagonal, 

and diamond shapes. For each extent size, mean LST and NDVI values were extracted, and 

Pearson’s correlation coefficients were calculated for each buffer shape and size. This 
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provided a comprehensive dataset to examine how scaling influenced the strength of the 

LST-NDVI relationship. 

To evaluate the scaling effects described in the second hypothesis, we performed a trend 

analysis by plotting correlation coefficients for each buffer shape across all extent sizes. This 

allowed us to observe whether correlations consistently strengthened with increasing spatial 

extent. Cross-scale comparisons were then conducted to determine whether differences in 

correlations between shapes diminished at larger extents. To ensure consistency and 

reproducibility, the entire workflow, including buffer generation, data extraction, and 

statistical analysis, was automated using a Python script. The script efficiently processed the 

raster datasets to generate buffers of all shapes and sizes, calculated mean LST and NDVI 

values, and conducted the necessary statistical tests. This automation reduced manual errors 

and allowed for consistent application of the methodology across the extensive dataset.  

 

 

RESULTS 

Correlation Between LST and NDVI Across Buffer Shapes 

The results demonstrate that the correlation between LST and NDVI varies significantly 

depending on the spatial extent shape and size. As depicted in Fig. 3, areas with sparse 

vegetation correspond to higher LST values, confirming the expected inverse relationship 

between vegetation density and temperature. Fig. 4 highlights that the correlation between 

LST and NDVI becomes more negative with increasing spatial extent size across all buffer 

shapes, indicating a stronger inverse relationship as the spatial scale grows. This trend was 

consistent across circular, square, elliptical, hexagonal, and diamond buffers, though distinct 

differences emerged at smaller extents (90 to 270 meters). For instance, hexagonal and 

diamond buffers displayed more pronounced deviations from circular and square buffers, 

suggesting that the choice of buffer shape influences spatial data aggregation. 

 

Statistical Evaluation of Buffer Shapes 

Paired t-tests were conducted to assess the statistical significance of differences in 

LST-NDVI correlations among the five buffer shapes. As shown in Table 1, comparisons 

involving square and circular or elliptical buffers yielded no statistically significant 

differences, with p-values above 0.05. This suggests that these shapes tend to produce similar 

mean correlation values, indicating limited influence of buffer shape on the results when 

using standard geometries. For example, the square versus circle comparison resulted in 

a p-value of 0.08, while square versus elliptical produced a p-value of 0.19. 

In contrast, comparisons involving hexagonal and diamond buffers revealed significant 

differences. The square versus hexagonal comparison yielded a p-value of 0.00, and the 

square versus diamond comparison produced a p-value of 0.001, indicating that hexagonal 

and diamond buffers generate distinct correlation patterns compared to standard shapes. 

Similar trends were observed when circular buffers were compared with hexagonal (p = 

0.016) and diamond (p = 0.046) buffers. These findings highlight that hexagonal and 

diamond buffers lead to more variable interpretations of spatial relationships, particularly at 

smaller extents. Additionally, elliptical buffers showed significant differences when 

compared to hexagonal (p = 0.005) and diamond (p = 0.015) buffers, further supporting the 

hypothesis that shape influences spatial data aggregation. 
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Fig. 3: Output maps of (a) NDVI, (b) LST 

 

 

Fig. 4: The correlation between LST and NDVI across various spatial extent sizes and 

shapes 
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Table 1: The results of the equivalent t-test between the mean values of different extent 

shapes and sizes 
 

Null hypothesis: Mean (test sample) – Mean (reference sample) ≥ 0 

Alternative hypothesis: Mean (test sample) – Mean (reference sample) < 0 

 Variable N Mean StDev SE Mean DF T-Value P-Value 

         

 Square  31 -0.71 0.012 0.002 59 -1.3 0.08 

 Circle 31 -0.70 0.012 0.002    

         

 Square 31 -0.71 0.012 0.002 59 -0.88 0.19 

` Elliptical 31 -0.70 0.012 0.002    

         

 Square 31 -0.71 0.012 0.002 59 -3.6 0.00 

 Hexagonal 31 -0.69 0.011 0.002    

         

 Square 31 -0.71 0.012 0.002 58 -0.88 0.00 

 Diamond 31 -0.70 0.010 0.002    

         

 Circle 31 -0.71 0.012 0.002 59 -2.2 0.01 

 Hexagonal 31 -0.69 0.011 0.002    

         

 Circle 31 -0.70 0.012 0.002 58 -1.7 0.04 

 Diamond 31 -0.70 0.010 0.001    

         

 Elliptical 31 -0.70 0.012 0.002 59 -2.6 0.00 

 Hexagonal 31 -0.69 0.011 0.001    

         

 Elliptical 31 -0.70 0.012 0.002 58 -2.2 0.01 

 Diamond 31 -0.70 0.010 0.001    

 

 

DISCUSSION 

This study aimed to investigate how variations in the shape of spatial extents influence the 

relationship between two key variables, LST and NDVI, and their effects on our 

understanding of landscape structure. The key findings are as follows: (1) The correlation 

between LST and NDVI varied based on the shape of the spatial extent. While these 

correlations showed differences, the observed variations were statistically significant. (2) 

When examining the relationship between NDVI and LST across different spatial extents, we 

found that the correlation increased with the size of the spatial extent, reaching its highest 

value at 990 meters. Our study highlights the significance of our findings on the influence of 

spatial extent shapes and sizes on the correlation between LST and NDVI, contributing to the 

broader field of landscape ecology.  

Our results confirm that the shape of spatial extents significantly impacts spatial data 

aggregation and the observed relationships between ecological variables, with non-circular 

shapes like hexagonal and diamond buffers producing distinct patterns, especially at smaller 

extents. As extent size increases, the differences between shapes diminish, indicating that 

larger spatial extents may mitigate the influence of buffer geometry. This observation aligns 

with the hypothesis that spatial extent shape has a measurable effect on LST-NDVI 

correlations and that larger spatial scales offer more stable correlations across all buffer 

types. By emphasizing the importance of extent shape, our findings address a critical 
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knowledge gap in multi-scale landscape analysis, a topic often overlooked in previous 

research that primarily focused on extent size alone. 

From a methodological perspective, our study demonstrates a robust approach to testing 

hypotheses on spatial relationships. The use of multiple buffer shapes—circular, square, 

elliptical, hexagonal, and diamond—allowed for a nuanced understanding of how spatial 

geometry affects data interpretation. Statistical validation through paired t-tests provided 

clear evidence of significant differences between certain buffer types, especially hexagonal 

and diamond buffers compared to standard shapes. For example, the square versus hexagonal 

comparison yielded highly significant p-values, underscoring the unique patterns these 

non-standard shapes reveal. These results suggest that buffer shape considerations should be 

incorporated into future multi-scale analyses to enhance the accuracy and reliability of 

ecological interpretations. Such methodological advancements are critical for improving the 

rigor of landscape ecological studies and addressing the inherent variability introduced by 

scale-dependent factors. 

Our findings resonate with earlier studies that investigated scale effects in landscape 

metrics. For instance, Song et al. (2014) demonstrated that larger pixel sizes enhance 

correlations between LST and urban features, identifying optimal resolutions for assessing 

landscape-LST relationships. Similarly, Lu et al. (2020) noted peak correlations between 

NDVI and LST within specific cell sizes, reinforcing the idea that spatial scale plays a pivotal 

role in determining ecological relationships. However, our study extends these findings by 

highlighting the impact of shape in addition to size, offering a more comprehensive 

perspective on scale-related dynamics. This contribution is particularly relevant given the 

lack of empirical studies on the interplay between extent shape and landscape metrics 

(Miguet et al., 2016), as highlighted by  

The implications of our results extend beyond methodological considerations to address 

broader conservation and land management challenges. Understanding how spatial geometry 

influences LST-NDVI relationships is crucial for designing effective conservation strategies, 

particularly in fragmented landscapes. For instance, the ability of hexagonal and diamond 

buffers to capture unique spatial patterns could be leveraged to refine habitat suitability 

models or identify microclimatic variations critical for biodiversity conservation. This aligns 

with calls for integrating landscape-scale processes with macroecological patterns, as 

emphasized by Teng et al. (2020). Such integration is essential for addressing the complex 

interactions between local landscape features and regional biodiversity trends, particularly in 

urban and agricultural settings where land-use intensity and fragmentation are pronounced. 

Furthermore, the international importance of our findings lies in their applicability across 

diverse landscapes and ecological contexts. By demonstrating that spatial geometry 

significantly influences ecological relationships, our study provides a framework that can be 

adapted to various geographical settings, from urban areas to rural agricultural landscapes. 

For example, Norton et al. (2016) stressed the need for hierarchical, multi-scalar models to 

understand biodiversity dynamics in urban ecosystems. Similarly, Gabriel et al. (2010) 

highlighted the multi-scale dependencies of farmland biodiversity, advocating for policies 

that account for cross-scale interactions. Our results contribute to these discussions by 

providing a scalable and adaptable methodology for exploring spatial relationships in 

different ecological and geographical contexts. 

In addition to spatial scale, temporal dimensions must also be considered to fully 

understand ecological processes. While our study focused on spatial relationships, it is 

important to acknowledge that temporal scales can also influence the LST-NDVI 

relationship. For instance, Ma et al. (2016), showed that temporal variations in LST and 

NDVI correlations could reveal historical legacies and long-term ecological trends. This 
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highlights the need for future studies to incorporate temporal analyses alongside spatial 

dimensions to capture the full complexity of landscape dynamics. Overall, our study 

advances the field of landscape ecology by addressing critical gaps in understanding the role 

of spatial extent shape in ecological analyses. By integrating methodological rigor with 

practical relevance, our findings offer valuable insights for improving multi-scale landscape 

analyses and developing effective conservation strategies. The demonstrated impact of buffer 

shape and size on LST-NDVI correlations underscores the need for a nuanced approach to 

spatial analysis, one that considers both geometric and scale-related factors. These 

contributions not only enhance the theoretical foundations of landscape ecology but also 

provide practical tools for addressing pressing environmental challenges on a global scale. 

 

 

CONCLUSION 

This study provides novel insights into how spatial extent shape influences the relationship 

between LST and NDVI, addressing a critical gap in landscape ecology research. Our 

findings demonstrate that non-standard buffer shapes, such as hexagonal and diamond, yield 

distinct spatial patterns, especially at smaller extents, while differences diminish at larger 

scales. These results highlight the importance of incorporating spatial geometry into 

multi-scale analyses, advancing the methodological rigor in interpreting landscape-scale 

ecological relationships. This study is particularly significant for international readers as it 

presents a scalable and adaptable approach for ecological investigations across diverse 

landscapes. By emphasizing the interplay between spatial shape, scale, and ecological 

metrics, the findings contribute to the broader goal of improving the accuracy and 

applicability of landscape-scale analyses in addressing global environmental challenges. In 

the field of landscape ecology, these results underscore the need to consider not only spatial 

extent size but also shape when exploring ecological relationships, offering new directions 

for research and practical applications in conservation and land management. 
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